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SOLUTION OF VARTATIONAL PROBLEMS BY MEANS OF A
*
GENERALIZED NEWTON-RAPHSON OPERATOR

.
Robert McGillJr and Paul Kenneth
Research Denartment
Grumman Aircraft Engineering Corporation

Bethpage, N.Y.

ABSTRACT ~ =/ T

7

This paper presents the development of an indirect method for
solving variational problems by means of an algorithm for obtaining
the solution to the associated nonlinear two-point boundary wvalue
problem. The method departs from the usual indirect procedure of
successively integrating the nonlinear equations and adjusting
arbitrary initial conditions until the remaining boundary conditions
are satisfied. Instead, an operator is introduced which produces a
sequence of sets of functions which satisfy the boundary conditions
but in general do not satisfy the nonlinear system formed by the =
state equations and the Euler-Lagrange equations. Under appropriate
conditiors this sequence converges uniformly and rapidly (quadrati-
cally) to the scoluticon of the nonlinear boundary value problem. The
computctional effectiveness of the algorithm is demonstrated by three

numerical examples.

*
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INTRODUCTION

The mathematical theory used for the study of optimizaticn
problems is the Calculus of Variations. Application of this theory
to meaningful models of physical situations generally results in a
mathematical representation of the solution which requires some
numerical technique to effect solutions of uce to the engineer.
Since the major computational device available today is the high
speed digital computer, e.g., the IBM 7094, an a priori requirement
for a numerical algorithm is that it be systematically adaptable to
high speed digital computation. For the Calculus of Variatioms :
there are two general numerical approaches; the Direct Methcds,
and the Indirect Methods. The direct methods procead by solving
a sequence of nonoptimal problems with the property that each suc-
cessive set of solution functions yi=lds an improved value for the
functional being optimized. An example of such a procedure is the
Method of Gradients which has been applied to a variety of problems
with considerable success. The indirect methods are concerned to
find by numerical means a set of functions which satisfy the neces-
sary conditions for an extremal, i.e., the Euler-Lagrange differen-
tial equations. These necessary conditions and boundary conditions
form a nonlinear boundary value problem and it is here that the
numerical difficulty arises. The usual approach to this problem
is the systematic variation of arbitrarily chosen initial conditioms
until the remaining boundary conditions are met. This technique has
proved largely unsuccessful owing to increased dimensionality of the
interesting problems and to the sensitivity of boundary conditions
to small changes in initial conditions. 1In lieu of this an algorithm ~

has been developed which proceeds by solving a sequence of lineax

boundary value problems such that the sequence ci solutions converges
to the solution of the nonlinear problem. Since the linear boundary
value problem is easily handled numerically the algorithm is readily
adaptable to high speed digital computation.




In what follows we shall discuss this approach in some detail
including a discussion of the numerical application. This is fol~-
lowed by three numerical examples to illustrate the computational
effectiveness of the method.

For comparison with other methods for handling the associated
boundaxry value problem see Breakwell, et al.,1 Scha*'mack,2 and
Kelley, et al.3. For a direct comparison of gradient, second vari-
ation, ana genera’ized Newton-Raphson techniques, as applied to a

specific optimization problem, see Kopp, et a1.4.

THE GENERALIZED NEWTON-RAPHSON OPERATOR

We are concerned with nonlinear operator equations of the fol-

lowing form
BX =0

where X 1is an element of an appropriate metric space S and B
is a nonlinear operator.

For the case of the nonlinear two-point boundary value problems
of interest herein the operator equation BX = 0 1is given by the

following system of nonlinear differential equations and boundary

conditions : v
)i - F(X,t) = , te [to,tf]
eh (tg) = é” LD (t) = xél) _
& & & &

x 2 () = %y x 2 (e =%

v
3
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where

x =W,

Py

s

Foo= (e, e0y
£(D) - f(i)<x(l), ...,x(N),t> , i=1,...,N .
The metric space S 1is given by
S = {X(t): x(i)(t) is continuous on [to,tf] , i= l,...,N} s

with the metric

N
(i i
pXy ;X)) = Z miXIX?jl)(t) - xl( I X;,X
i=1 "
We define an operator A on S by X

arbitrary in S,

xn_H_ = J(Xn,t) [xn_l_1 - xn] + F(Xn, t)

N N N N
&y, &) & &
x, (tg) = %, xoo () = xg”
n=12, s
4
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where J(X,t) 1is the Jacobian matrix of partial derivaiives of , N
the f(i) with respect to the x‘j), i=1,...,% j=1,...,N.

Under appropriate conditiun: the cequence {Xn] converges

strongly to the solution X  of the operator equation BX = 0,

* % '
i.e., lim p(Xn,X ) =0, where X 1is the solution of the —
n—

nonlinear boundary value problem. The metric p implies uniform
convergence for each of the component functiois x(i)(t) of X(t).
The operator A 1is called the Generalized Newtcen-Raphson
operator since it may be obtained from a direct generalization of
the Newton-Raphson sequence for finding roots of scalar equations.

For the scalar case the operator equation BX = 0 becomes
fx) =0 )

and thc sequence defining A becomes
0=f - x 1+ £(x) = 0,1,2
= (xn) [Xn+1 xn] (xn} s n=2yu,l:2,.

The appropriate metric space S 1is the scalar field with the usual
metric. As before, X 44 = Axn, n=20,1,2,..., and X is an 7’
approximate solution of f£(x) = 0. As can be seen from the scalar
application the basic concept involved is geometric; a curve is
sequentially replaced by its tangent line, i.e., the nonlinear prob--

lem is replaced by a sequence of linear problems.  Since there is .a

well developed structure for linear problems, e.g., superposition

for systems of linear differential equations, the algorithm becomes. -
computationally attractive. In addition, since the linear twq¥point e
boundary value problem can be reduced to repeated numericallintégra-

tion of initial value problems, the method is readily adaﬁ%éble to

o P B

high speed automatic machine computaticn. L
A basic generalization of Newton's Method; to operator equa-
tions in Banach spaces, was first obtaipad’by Kantorovitch.sr Wargée

considered the solution of the ini;ial'value problem for first order
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differentiél equations by a special case of Kantorovitch's generaliza-
tion. The algorithm was apparently first suggested for boundary
value problems by Hestenes’ who called it "Differential Variations,"
and later further developed by Bellman and Kalaba8 who refer to the
technique as "Quasilinearization." Kalaba gives a convergence proof?
based on monotonicity and convexity arguments, for the case of a single
second order differential equation with two-point boundary conditions.
A convergence proof for N dimensional systems was given by licGill
and Kenneth.9 The lattexr proof proceeds by establishing sufficicnt
conditions for the operator A to be a contraction of a complete
metric space into itself. The desired results then fol.ow from the
Contraction Mapping Principle.]'0 The method is also mentioned by
Kelley11 who remarks that computational experience with the technique

is lacking.

NUMERICAL APPLICATION

I In this section we present a brief description of a2 numerical
{ procedure for solving the linear system. This procedﬁre, with
appropriate modificatiéns,uwas used in obtaining the solutions to
- the numerical examples included in this report.

At the n+15t stage of the iteration we have the linear system
- o , X4 = J(Xn,t)[xn_'_1 - Xn] + F(Xn,t)
L which is equivalent to

X

C(t)X(t) + D(t) E t e [to,tf]
’ XN{_-;/(X]_’J . ’XN) |

)

o _ x) (tg) = xp % (Ep) = %

- xy(g) =y X
2z 7 3

!
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. VA
of solutions of the homogeneous system X = C(t)Z(t) with initial

N,.
Jx(§+l)

Generate by numerical integration a set (t)), i= 1,

conditions
(3+1)
X (to) = (0,0,.. :O:XN = 1,0,...,0)
1
2
(5+2)
X (to) = (0:0:'-°:O:XN = 1,0,...,0)
-2
2
xM(e) = 0,0,...,0,...,0,1) .
Generate a particular solutiocn J”) of the nonhomogeneous

system X = C(t)X(t) + D) with initial conditiovs

«® N ‘ -
(to) ioszo, .. -,X-N-O’I/(].’Kz? .. o’k;.:‘
2 7
whee Ki’ i= 1,..,,?, axc arbitrary, e.g., K] z ?l = ,,, = KN = 0.
‘ 2
They'should however, followiig & suggestion h- . .vard Bellman, be
chosen to preserve numerical precision in so-.«. ¢ the % similtane-

ous linear equaticns given below. The solutiorn X(t) of the non-

homogeneous system with the presciribed bounuehy conditions is then

- . given by.
{
; ' GHD) Q) ) @)
i X(t) cy X“ (&) + ey X (t) + ... + ch‘ (£) + XY/ ()
& >+l -2 - )
2 2
\ ;
Egrwa:ﬁ%&@%@éﬁiiﬁﬁuﬁréﬁﬁwﬂwpﬂﬂﬁ;?g“—.;-; e ™ it s T TTﬁfZ‘aﬁf:;w i




of ‘the vectors {X

r
where the g constants Cy i=1, ..., g, are determined from
e
. € boundary conditions at t = te by the solution of g simul tane-
ous linear equations.
For the purpose of conserving rapid access storage and alsc as -

a check on the solution of the linear system the solution X(t) was
not obtained from the linear combination given above. Rather it was
calculated by once more integrating the nonhomogeneous system

k = C(t)X(t) + D(t) with initial conditions

X(

+ Kl,c

=

_0) = (xlO’XZO""’XEO’c ) + K2,...,cN:+ Fi?
2 ) 2 ,
’I&

The latter procedure requires the storage of only the final values

Qi)

N
§+l

N

..,g, and the final value of X(P) 5

for the computation of X(it). The solution X(t) is of course .

i=1,.

stored since it is required for the determination of C(t)— and

D(t) for the next iteration.

pod

T

v

ORBITAL INTERCEPT EXAMPLE

"

The first example although not an optimization pr- hlem sexrves

to illustraté the application cof the algorithm to a given nonlinear

boundary value problem. ’ : b

<

The problem solved is that of determining the freé fall path
which a space vehicle must follow iﬁ’transferring srom a specified
position three hundred miles above the earth to another specified
position six hundred miles above the earth; with a'fiXed transit -
time. The vehicle is assumed tc¢ be in coasting flight and the'p&r-
tucbing effect of the moon is included.. A schematic diagram of the
probizm is shown in Fig. 1, where Xb(t\ = (xo(t),yb(t),zo(ﬁ)>;;,thg,,"'

8 o _' ) i
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~ starting vector, is ¢f the simplest possible form, namely, the straight
line joining the two points in space; X*(t) is the soluticn vector.
The unit of length is taken to be the radius of the earth and the
principal gravitational constant is normalized to one. This xesults
in a time unit of §805.46 seconds.

The sixth order ncnlin=zar system and two-point boundary conditions

which furnish the mathematical descriptionr cf the problem are given by -

;{__K._X__i_ __;)i_t_ﬂw
= 3t (T3 3
r 5 r
M
Yu " Y Y .
- v L M M ) .
r o T
M
zZ - 2 A
- _ w2 M___—~ M
z=-KS5+K (3 3 )
. 6 r -
M
x(0) = 1.076000 x(2) = 0.
y(0) = 0. y(2) = 0.576000
z{(0) = 0. z(2) = 0.997661
3
r =[x2+y2+z"‘]
1
_ L2 2 2.2
rM—[xM+yM+zM]
]-é'
o 2 2 .z
6 = |Gy -7+ Gy~ N+ (zy - 2)7)

For simplicity the lunar cocrdinates, Xy Yy 2y 3%e assumed
constant.

The time interval ([0,2] was divided into 1C0 parcts and the
necessary numerical integrations carried out by means of a high

speed digital computer (IBM 7094) to an accuracy of seven signifi-

4
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cant figures. The results are exhibited in Table 1 where for bLrevity
only six points in time are shown. Xo(t) is the linear starting
function; Xl(t) is the first mapping; Xz(t) is the second mapping,
etc.; and X¥(t) results from the integration of the actual non-

linear equations with the initial wvelocities,

%(0) = 0.101637
$(0) = 0.472285
2(0) = 0.818022 ,

obtained from the final iterate.
The sequence {Xn} converged, within the accuracy of our com-

putations, in three iterations with:

p(X,,Xy) = 0.480116
' -—

p{X,,X]) = 0.133753

p(X4,X,) = 0.004375

p(X4,X3) = 0.000004 ,
where

P(X_4q5X ) = miXIxn+1(t) -x (6)] + miXIYhﬁl(t) -y (B) ]

+ max]zn+l(t) - zn(t)l .
t

As a further check on the over-all accuracy the perturbing
force was set to zero and the final value of the magnitude of the
initial velocity was compared with that obtained by the closed form

solution for the two-body oroblem. Within the accuracy of our com-

putations these values were identical.




We note that we have simply and rapidly produced the numerical
solution to a simple orbit determination problem, viz., given the
position of a body at two distinct times, determine the time varying
orbital elements of tlie body in the presence of perturbing forces.
Solutions have also been produced even when the two points are ex-
actly 180 degrees apart. In this case the straight line could not
be used as a starting function since it is singular. However, a
simple triangular path was sufficient to produce the characteristic

rapid convergence.

LUNAR DESCENT EXAMPLE — MAXIMUM RANGE

L very simple variational problem was chosen for the second
numerical example. This problem concerns the maximization of the
translational range of a lunar vehicle during descent to rest from
a hovering condition 1000 ft above the lunar surface. The time
for the mareuver was fixed at 2.062 minutes.

For the purpose of generating this numerical example the follow-

ing simplifying assumptions were made:

Constant thrust acceleration
Uniform gravitational field

Analysis restricted to two dimensiomns.

The problem then is reduced to finding the thrust steering angle time
history which produces the maximum range in the given fixed time.

The associated boundary value problem may be obtained by the
methods of Chapter 4 of Ref. 11, oxr by the Pontryagin maximum prin-
ciple.12 The resulting boundary value problem is given by the fol-

lowing nonlinear differential equations and boundary conditions :

11




u(to)

l

v(to)

y(ty)

The state variable u 1is

Y0

u(tf)

v(tf)

y(to)

[
]
0

He

L)

)

£(4)

£(5)

Y

. = r
’ t € Lto:tf]

the indefinite integral of the

ringe X, and y 1is the vertical height measured positive-~up

along the local vertical.

has the wvalue appropriate to the moon.

The local gravitational constant &M

In addition, the adjoint

variables have been scaled by putting Ax at the initial time

equal to oue.

12
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The unit of length was chosen equal tc¢ the initial altitude of

1000 ft and the local gravitational ccnstant and vehicle mass were

put eqral to one.

for the problem:

u, = 0.000

0 Ug T
Vg = 0.000 Ve =
Yo = 1.000 Ve =
T = 5.000 t0 =
8y = i.000 te =

This normalization resulted in

crude starting function Xo(t)

This resulted in the following normalized data

0.000 x, = 0.000
0.000
0.000
0.090

9.G00

a time unit of 13.70 seconds. A

v7as chosen as follows:

uo(t) =0

vo(t) =0

R T
Ryo(t) = Cq

Auo(t) =¢c -t

Avo(t) =c, -cyt,

where the three constants Cys Cys and g correspond to an arbi-

trary estimate that the steering angle, measured from the local

horizontal, should be initially zero, equal to w/2 at

t

t—-—

5 and slightly less than 7 at t = tf.

13

_,
i

ks~ gy




The sequence {Xn} for this case converged uniformly to an
accuracy of 5 significant figures in six iterations. The total

computer time (LBM 7094) required for this problem was 18 seconds.

The desired final value of the range Ke = 106, 200 ft was ob-
tained from
te
Xe = u*(t)dt s
%o

%
where u (t) results from the integration of the nonlinear state
and Euler-Lagrange equations with a complete set of initial values
taken from the final iterate. This final integration of the non-

linear equations alsc served as an over=-a.il check on the solution.

LOW THRUST ORBITAL TRANSFER EXAMPLE — MINIMUM TiMF

The third and final example concerns the problem of minimizing
the transfer time of a low thrust ion vocket between the orbits of
Earth and Mars. This problem involves additional complications over
the previous problems, the mnst significant of which is the fact that
the final value of the independent variable is no longer fixed.

To simplify the problem as much as possible the rocket's thrust
level was assumed constant, and thus the single control variable is
the thrust direction. Further, the orbhits of Earth and Mars were
assumed to be circular and coplanar, and the gravitationzl attrac-
tions of the two planets on the vehicle were neglected. Tha follow-
ing system parameters for the low-thrust vehicle were adopted from
Ref. 5:

Initial Mass, m, 46.58 slugs
Specific Impulse 4700 sec
Propellant Ccasumption Rate, m, -6.937 x 10-7 slugs/sec
Thrust, T, 0.127 1ib
Thrust/Initial Weight 0.9 x 1074

14
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The equations of motion are given by:

Radial Velocity

I':==f(l)=u

2

Radial Acceleration

where u and v are the radial and circumferential velocities
recpectively; r 1is the radius; and 6 1is the thrust direction
angle measured from the local hoxrizontal. All the initial and
final values of the state variables were specified, and the quanti _.
to be minimized was tes the final time. Since the method as pre-
viously outlined required a fixed final time, the proccdure was al-
tered to suit the minimum time problem. What follows is a brief
description of the modified procedure and a discussion of the numeri-
cal results.

The two-point boundary value problem resulting from the Euler-

Lagrange equations is given by :

r =u = f(l)
2 A
1'1=3;-~-1§:+a(t) L L:f(z)
r° 2 252
(7‘u+ ?\v>
A (3
v = - %} + a(t) X - £

1
2

e ey~ Ty I - e — - * A B A ST




oY L, kN L w I ()
%r“(rz 23>Au 27\v = £

r r
A=~ +X = £03
u r r v
A o= =92 X + 8 =f(6)
v r U r v

where
_ T
a(t) = m, + mt

and the boundary conditions are :

t =0 t = tg (unspecified)
r(0) = r, r(tf) =T
u(0) = Uy u(tf) = ug
v(0) = vy v(tf) = Ve
This may be written as
X = F(X,t)
where
X= Cx(l), .. .,x(6)>
B GRAN-O)
and

Dy =rey , x@(e) = u

D@ -nw , PDo-rm , O -

16
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The method proceeds as before by solving the

linear two point problems

: - X -7 1 s ms
Xnﬁl J(“n’t)[xn+l X 1+ r\Xn,t)

J(X,t)
with cespe-t to the x

o where
My O

i=1,..

following sequence of

an=0,1,... ,

is the Jacobian matrix of partial derivatives of the
6, j=1,...,6.

ing vector, Xo(t), and an estimated final time,

A stuxrt~
tf , are assumed
0

and the sequence of linear boundary value problems is solved numeri-

cally by the procedure outlinmed previously, with the following

boundary values:
t=20 t

x D) =z @ =r,

xéz)(O) = un(O) = u, xﬁz)ktf)
x§3)(0) = vnKO) = Vy X§3)(tf)

4) 0y = -
x. " (0) = Arn(O) =1

Setting %r(O) = 1 accomplished the scaling
The iteration proceeds until Ekxn+l,xn) <B

6
PRy = ) nax 'xt(xﬂ )
< ~ t e [0,t. ]
i=1 fk
; 17

=t
fx

= u,(tp) = ug

= vﬁ(tf) = Ve

of the multipliers.
where

x(i)l .

n
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At this stage the final time, te is adju-~ted automatically
k
according to the difference [rp - r(tf )] by a scalar applica-
k

tion of the Newton=-Raphson procedure as follows

t = t, + (tfk i tfk-l) [r. - r(t: )]
- - K 3
f]ll tk r(tfk? r(tfk-l) f fk

where the derivative of the final time tf with respect to the
final radial distance g has been obtained by a finite difference
approximation. The above iteration on Xn now continues for the

new final time tf until F is again < B. The over=-all process

kt+l
proceeds until p < € where

1
p=pt+ilee -t .
P .

and b is a scaling factor. The ~corresponding itérate AXn+1 is
accepted as the solutioan to the minimum time problem, and -a final
check is run by integrating the nonlinear Euler-Lagrange equations
with a complete set of initial conditions taken from the final
iterate. ‘ o

For tme purpose of numerical precision the data for the sample

problem were normalized to obtain

ro = 1.000 ve= 8098

re = 1.525 ug = 0.000 . )
k =1.000 m, = 1.000 - e
vy =-1.000 o=~ .07487 g

ug =0.000 T = 1405 °,
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This resulted in a time unit of 58.18 days. The starting vector
XO(t) was chosen rather crudely as follows:

te = 178.0 days, or 3.060 of our time units

1
2

~
W
~
~
rt
~
|

" %® = (5@

1.000

e
-
E

7~~~

1

~
|
>
H
o

~

(W

~

il

.5200 for t e [0, i t

=.5000 for t e (3t

.3000 for t

o] )

0.000 " for ¢

M
S~
O
~
7~~~
t
~’
>
<
~
v
g
Il
(1)) m
o =)
-
T
=
ct
Hh
| S

‘The final two stariing functions Au (t) aund Av (t) correspond
‘ ~ 0

0
to a control angle eo(t) which is constant at 60° above the

local horizontal for the first half of the transit time, and con-

- stant inward along the local vertical for the remaining half of the

transit time (see Fig. 2).

The sequence {Xn} converged uniformly to an accuracy of 5
significant figures with 4 shifts of the final time in i3 total
iterations. The resultant minimum time was found to be 193.2 days;

in agreement with results pfeviously obtained by gradient methods.llA
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The total computer time (IBM 7024) required was 36 seconds. Figure 2
illu~trates the behavior of the control angle program, where eo(t) "
1is the starting function, al(t) through 94(t} correspond to the
4 shifts of the final time tes and 6 (t) results from the inte~
gration of the nonlirnear state and Zuler~Lagrange equations with
the initial values taken from the final iterate. The curves for
92(t), 93(t), and 64(t) lie, within our plotting accuracy, on
the solution curve 9*(t); except for the final segments =2s indi-
cated on the figure.

We obscrve :that for this particular example the approach just
described is systematic, simple to apply, and yields rapid conver-
gence from crude a pricri starting functions. o

By simple changes in the initial deta, sclutions were also gern-=
erated for Earth to Venus and Earth to Jupiter transfers. The mini~

mum times for these were 139.2 days and 478 " days respectively.
ONCLUST

The numerical examples of this paper suggest that the Newton-
Raphson operator technique may be a useful computational metiod for
obtaining solutions to meaningful nonlinear boundary vaiue prob’ems;
and in particular for obtaining extremals for variational problems.
Tt may be of particular use in generating families of solutions for -
given variational problems with differing wvalues fcr the relevant
parameters; for in this case the solution for one set of parameters
becomes the starting function for the succeeding »roblem. This A
implies that the desired family may be generated with reasonatle
computacion time. _ ’ .

It should be noted that dividing the boundary conditiLMS‘exactly‘
in half was purely for convenience of discussion; the compugational -
problem obviousiy simplifics if more conditiods are lkaown at one e@dﬁ

than at the other. In addition, it is pot necesjary that the start-

20
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ing functions be continuous or meet the brundary conditions; all
of the iterates, however, will have these properties. Also, although
the examples shown have the terminal values of the state variables
specified, this is not a necessary restriction. If a particular
state coordinate is left unspecified, the transvers<ality conditions
require that the corresponding h(tf) be zerv. This simply changes
the linear algebraic system to be solved fcr the coupling constants.
The solutions preduced by this method satisfy the necessary
conditions for opntimality as given by the Pontrvagin maximum princi-
ple,12 and classically the Weierstrass and Clebsch ncecessary condi-

tions. However, the questions of global optimality, and sufficiency,
]

-~

require further testsz’ and remain open.

We note certain reservations. Although it was possible, for
t’ - included examples, to obtain crude a priori starting functions
sufficient to produce convergence, it is not clear that this will
remain true for other more complex problems. If it chould occux
that starting functions sufficient for convergence are not easily
cbtainsble then one might ccnsider a hybrid approach, e.g., using a
few steps of a gradient technique to produce the necesscry starting
functions.

Finally, we obsexrve that application of this algorithm to prob-
lems with bounded control variables and/or state variable constraints
requires further modification and extension of the technique. A
sample problem with a state variable inequality constraint has been
solved and will be reported at a later date; a problem with bounded

control is presently under study.




REFERENCES

Breakwell, J. V., Speyer, J. L., and Bryson, A. E., "Optimization
and Control of Nonlinear Systems Using the Second Variation,"
J. SIAM Control, Ser. A, Vol. 1, No. Zz, 193-223 (1963) .

Scharmack, D. K., "A Modified Newton-Raphson Method for the Control
Optimization Problem," AIAA Control and System Uptimization Con-
ference, Monterey, Calif. (Jan. 27-28, 1964).

Kelley, H. J., Kopp, R. E., Mover, H. G., "A Trajectcory Optimizacion
Technique Based Upor the Theory of tihe Second Variation," AIAA
Meeting cn Astrcdynamics, Yale Univ., New Haven, Conn. (Avg. 19-21,
1963) .

Kopp, R., E., McGill, R., Moyer, H. G., Pinkham, G., "Several Tra-
jectory Optimization Techniques," Conf~rence on Computing Methods
in Optimization Problems, UCLA, Los Angeles, Calif. (Jan. 1964).

Kantorovitch, L. V., Doklady Akad. Nauk SSSR (¥.S.) 59, 1237-i..0
(1948) .

Warga, J., "On a Class of Tterative Procedures for Solving Normal
Systems of Ordinary Differential Equations," Jour. of Math. and
Physics, Vol. XX¥I, No. 4 (Jan. .353).

Hestenes, M. R., "Numerical Methods of Obtaining Solutions of
Fixed End Point Problems in the Calculus of Variations," Rand
Corp. Rept. RM-102 (Aug. 1949).

Kalaba, R., "On Nonlinear Differential Equations, the Maximu:m
Operation, and Monotone Convergence," Jour. of Math. and Mech.,
Vol. 8, No. 4, 519-574 (July 1959).

22

bl

e - e ittt e st i e it



10.

11.

12.

13.

McGill, R., and Kenneth, P., "A Convergence Theorem on the
Iterative Solution of Nonlinear Two-Point Boundary Value Sys=
tems," XIVth 1AF Congress, Paris, France (Sept. 1963).

Kolmogorov, A. N., and Fomin, S. V.. Elements of the Theory of

Functions and Functional Analysis (Crayiock Press, Rochester,
N. Y., 1957), Vol. 1, Chap. II, pp. 43 £ff.

Kelley, H. J., "Method of Gradients," Qptimization Technidues,
edited by G. Leitmann, (Academic Prass, New York, 1962), Chap. 6,
pp. 206-252.

Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and
Mishchenko, E. F., The Mathematical Theory of Optimal rrocesses,

translated from the Russian by K. N. Trirogoff, (Interscience
Publishers, New York, 1962), Chap. II, p. 3l.

Bliss, G. A., Lectures on the Calculus of Variations, (The Univ.
of Chicago Press, Chicago, Ill., 1946), Chap. II, pp. 37 ff.

23




t
0.
X

0.4 0.8 1.2 1.6 2.0 |

— +

1 1.076000 0.860800 0.645600 0.430400 0.15200 O. ;

1.076000 1.015153  0.845061 0.61G986 0.323847 0. |

1.076000 1.048799 0.900816 0.657CJ)L  0.346085 0. |

1.076000  1.049839  0.302586 0.658550  0.346367 0. |
1.076006  1.049840  0.902587  0.658551  0.346868 0.
1.076000  1.049840 0.902587 0.658551 0.346868 0.

e
| 0. 0.115200  0.230400  0.345600  0.460800  0.576000 |
| ¢. 0.172927  0.324202  C€.447591  0.537713  0.576000 |

Q. 0.184664  0.348335 0.475158  0.553667  0.576000 |
0. 0.185100 0.3491.80 0.476056  0.55417?  0.576000
0. 0.185100 0.349180 0.476657 0.554173  0.576000
0. 0.185100 0.349180 0.476057 0.554173  0.576000
0. 0.199532  0.399064 0.598597 0.798129  0.997661
0. 0.299519  0.561534 0.775250 0.931347  0.997661
0. 0.319848 0.603341 0.822998 0.958980  0.997661
0. 0.320602 0.604800  0.824553 0.959854  0.997661
0. 0.320603 0.604798  0.824555 0.959855  0.997661
0. 0.320603 0.604798  0.824555 0.959855 0.997661
0. 0.4 0.8 1.2 1.6 2.0

Table 1 Time Histories for Intercept Example
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x(0) = (1.076000, 0., 0.)

Figure 1. Schematic Diagram for
Intercept Example
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Figure 2. Control Angle Programs for
Orbital Transfer Example
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